Pin Structures on Low–dimensional Manifolds

نویسندگان

  • R. C. Kirby
  • L. R. Taylor
چکیده

Pin structures on vector bundles are the natural generalization of Spin structures to the case of nonoriented bundles. Spin(n) is the central Z/2Z extension (or double cover) of SO(n) and Pin−(n) and Pin(n) are two different central extensions of O(n), although they are topologically the same. The obstruction to putting a Spin structure on a bundle ξ (= R → E → B) is w2(ξ) H(B;Z/2Z); for Pin it is still w2(ξ), and for Pin − it is w2(ξ) + w 1(ξ). In all three cases, the set of structures on ξ is acted on by H(B;Z/2Z) and if we choose a structure, this choice and the action sets up a one–to–one correspondence between the set of structures and the cohomology group. Perhaps the most useful characterization (Lemma 1.7) of Pin± structures is that Pin− structures on ξ correspond to Spin structures on ξ ⊕ det ξ and Pin to Spin structures on ξ ⊕ 3 det ξ where det ξ is the determinant line bundle. This is useful for a variety of “descent” theorems of the type: a Pin± structure on ξ ⊕ η descends to a Pin (or Pin− or Spin) structure on ξ when dim η = 1 or 2 and various conditions on η are satisfied. For example, if η is a trivialized line bundle, then Pin± structures descend to ξ (Corollary 1.12), which enables us to define Pin± bordism groups. In the Spin case, Spin structures on two of ξ, η and ξ ⊕ η determine a Spin structure on the third. This fails, for example, for Pin− structures on η and ξ ⊕ η and ξ orientable, but versions of it hold in some cases (Corollary 1.15), adding to the intricacies of the subject. Another kind of descent theorem puts a Pin± structure on a submanifold which is dual to a characteristic class. Thus, if V m−1 is dual to w1(TM ) and M is Pin±, then V ∩| V gets a Pin± structure and we have a homomorphism of bordism groups (Theorem 2.5),

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Spin Structures and Spectra

We give necessary and sufficient conditions for the existence of pin ± and spin structures on Riemannian manifolds with holonomy group Z k 2. For any n ≥ 4 (resp. n ≥ 6) we give examples of pairs of compact manifolds (resp. compact orientable manifolds) M1, M2, non homeomorphic to each other, that are Laplace isospectral on functions and on p-forms for any p and such that M1 admits a pin ± (res...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001